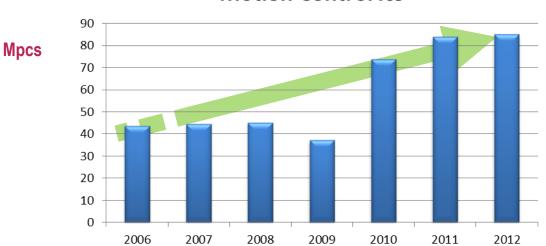


Stepper Driver ICs

ST Motion Control


Our strengths

- ✓ Pioneer in BCD and BCDoff-line technology, sold today in Millions pcs in many different application segments
- ✓ Skills in mixing of power, analog and digital structures in a single IC
- ✓ Strong expertise in systems and application requirements
- ✓ Strong skills on "design for robustness" thanks to the continuous improvement over 20 years of experience in the field

Motion Control Ics

Applications addressed

Industrial

- X-Y Position and Rotation systems
- PCB assembly (Pick & Place)
- Robotics & NC machines
- Textile industry (Sewing / Spinning machines)
- Professional printers
- Stage lighting

Point Of Sale

- ATM systems
- Vending machines

Gaming

- Casino machine
- Toys

Medical

- Diagnostic Equipment
- Pumps
- cPAP

Office equipment

Shredders

Intelligent buildings

- Security systems
- Antenna / satellite positioning

WWW.EMCU.IT

Wherever stepper motors are used!

xSPIN Product Family Overview

Fully integrated drivers with DMOS power stage

L62xx, L62xQ

DC, BLDC and stepper motor driver

Full set of protections

Microstepping driver

Adaptive decay

SPIprogrammable, diagnostics

L6460

DC and **Microstepping** driver

4 configurable full bridge drivers

DC-DC, GPIO, OP-Amp, DAC, **ADC**

Digital core for motion control

Microstepping driver

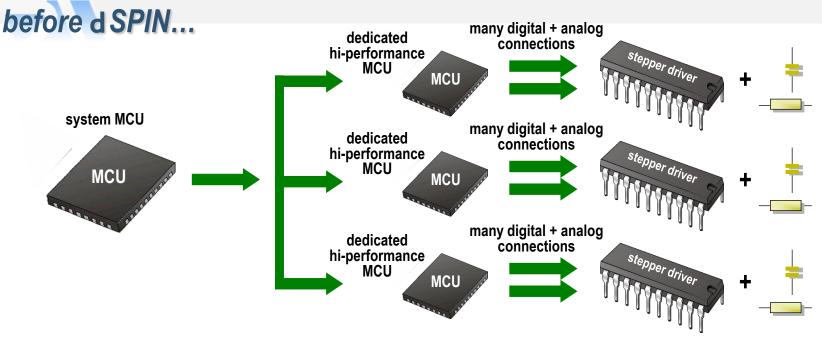
SPIprogrammable, diagnostics

Advanced controller

L6480/2

Digital core for motion control

Microstepping controller for 8x external MOSFETs, 85V


SPIprogrammable, diagnostics

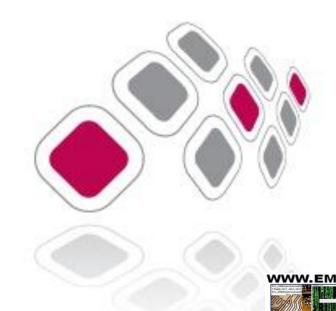
Performance and integration

Simplify the System with dSPIN SILICA AN AVNET COMPANY

with dSPIN...

- ✓ System is heavily simplified
- ✓ No more dedicated µC to perform speed profile and positioning calculations
- ✓ A lot less passive components

and... far better performances!



Current Mode Driver

L6474

L6472

L6482

Current mode driver L6474 - L6472 - L6482

Common Features

- Operating voltage: 8 45V
- 7.0 A output peak current (3.0 A r.m.s.)
- 0.28Ω R_{DSON} power MOSFETs
- Programmable power MOS slew-rate
- Up to 16 µsteps
- SPI interface
 - Access to rich register set
- Low quiescent and standby currents
- Integrated 5bit ADC
- Non dissipative current sensing
- Full set of Protections
 - Programmable non dissipative over current (on all power MOS)
 - Two levels over temperature protection
 - UVLO (Under-voltage lockout)

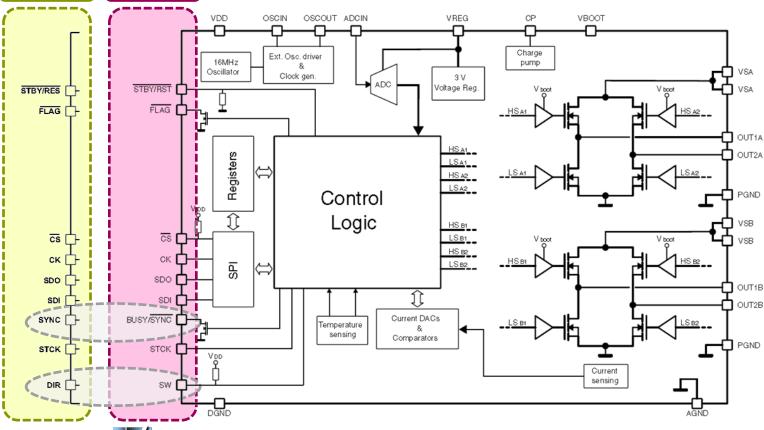
- Current control with adaptive decay
- Configuration through SPI bus
- Control using CLK & DIR pins

dSPIN - L6472

- Adaptive decay control
- Predictive current control
 - Average current is controlled
- speed or positioning commands
 - Programmable speed profile
- Fully controlled over SPI

cSPIN - L6482

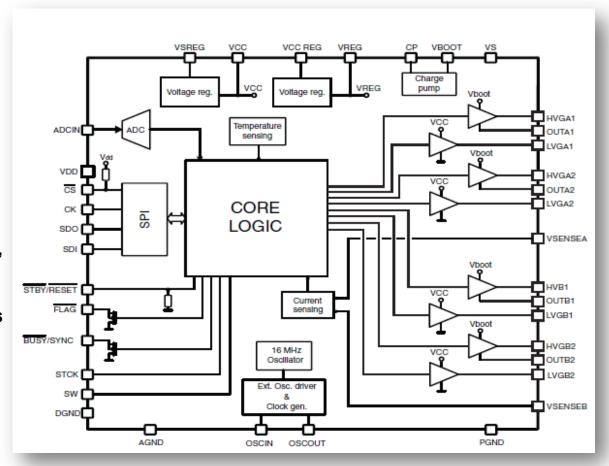
- External Power stage
- Supply Voltage 7.5V to 85V
- Programmable gate driving



easySPIN - L6474 & dSPIN - L6472 SILICA

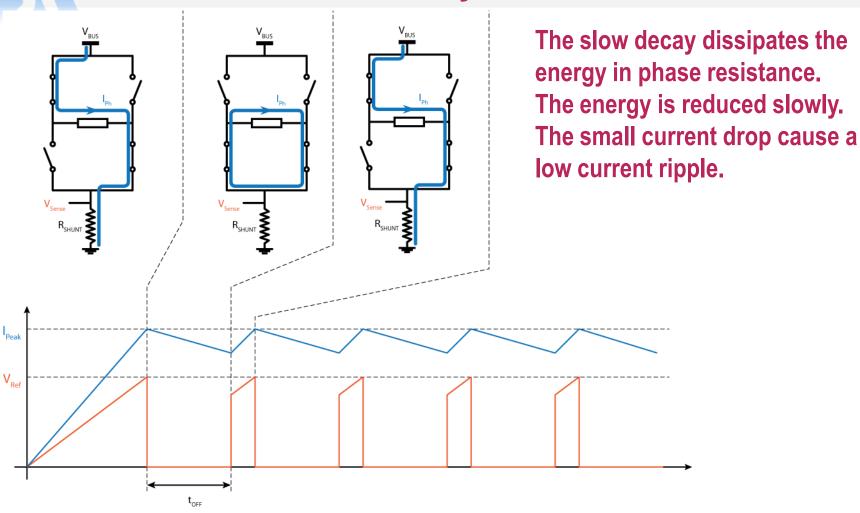
L6472

Both products are pin-to-pin compatible!



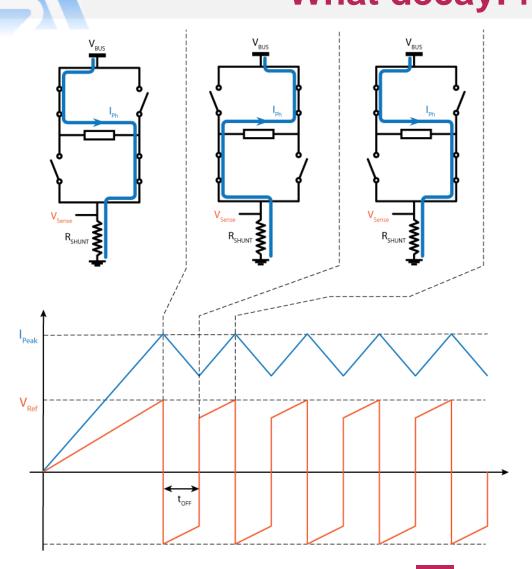
cSPIN - L6482

- Supply Voltage 7.5V to 85V
- EXTERNAL MOSFET
- Programmable gate driving
- SPI Interface for Configuration, Control & Diagnostic
- Full set of Integrated Protections (OCD, UVLO, THERMAL)



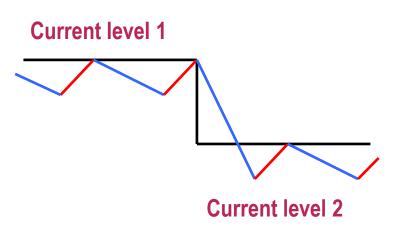
Current control

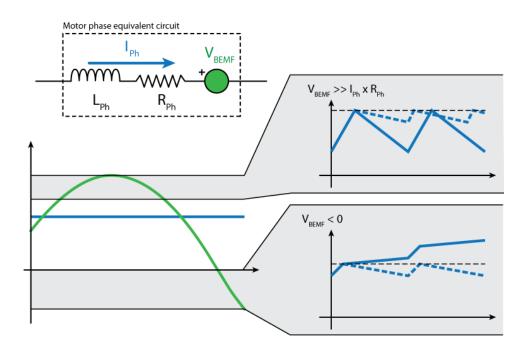
What decay: slow



Current control What decay: fast

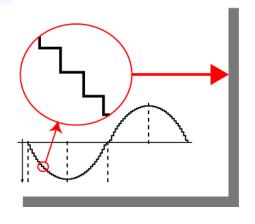
The fast decay sink the energy from the phase resistance using the bus voltage.

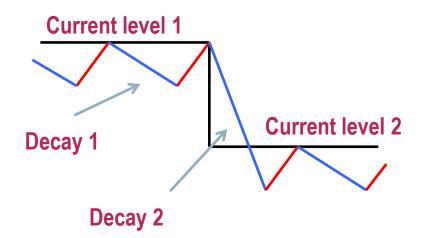

The energy is reduced quickly. The large current drop cause a high current ripple.



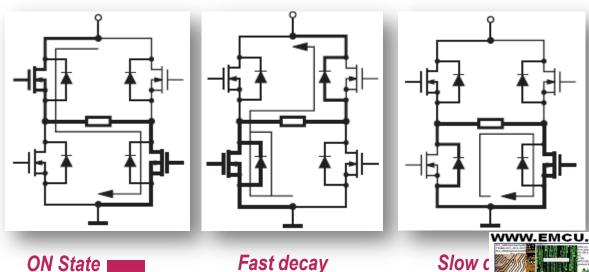
The right decay

The quantity of energy to removed in decay1 and decay2 are different → must choose the right timing and speed decay


According to conditions (current value, motor Back EMF, etc.) the effectiveness of slow and fast decay could be significantly changed.



Current control with Adaptive decay control



Automatically performs the best decay mode:

- **Torque ripple reduction**
- Soft and silent motion
- **Accurate positioning**

Fast decay

AN4158

AN4158 Application note

Peak current control with automatic decay adjustment and predictive current control: basics and setup

Dy Engles Boll

Peak current control with automatic decay adjustment and predictive current control

Introduction

The new STMicroelectronics dSPIN(a)™ and easySPIN(b)™ motor drivers provide two new patented advanced current control systems evolving from traditional peak current control systems: automatic decay adjustment and the predictive current control.

Using automatic decay adjustment, the dSPIN and easySPIN devices allow current ripple to be reduced and control robustness to be increased especially in microstepping applications. The predictive current control regulates the average current instead of the peak current, obtaining a more precise positioning, and reduces the variation of the power stage switching frequency.

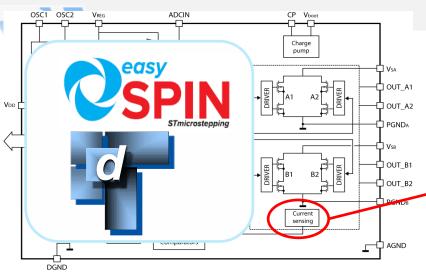
Automatic decay adjustment and predictive current control allow stepper motors to be operated with less torque ripple, fewer vibrations and much more smoothly at low speed.

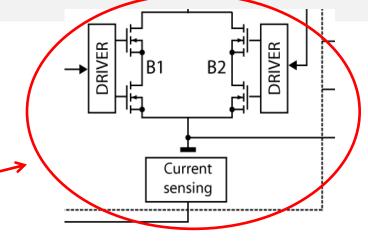
This document describes the basic principles and the operation of the new control systems and provides suggestions on parameter setup in order to obtain optimal results.

September 2012

Doc ID 023635 Rev 1

1/34

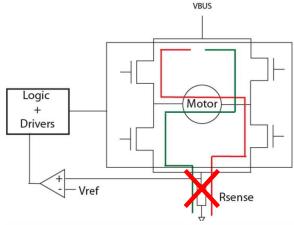

a. L6470 and L6472 belong to the dSPIN family of stepper motor drivers. The information discussed in this
document only applies to the L6472.


L6474 belongs to the easySPIN family of stepper motor drivers.

Sensing current

NON Dissipative Current Sensing

Cost Saving

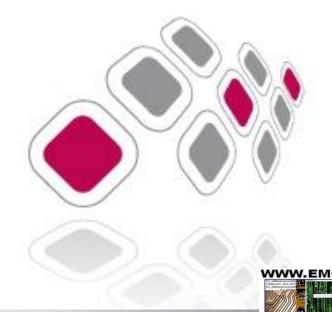

Less Components

Better

System Efficiency

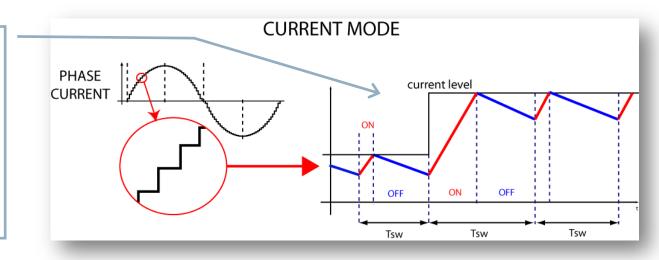
Lower

Power Dissipation

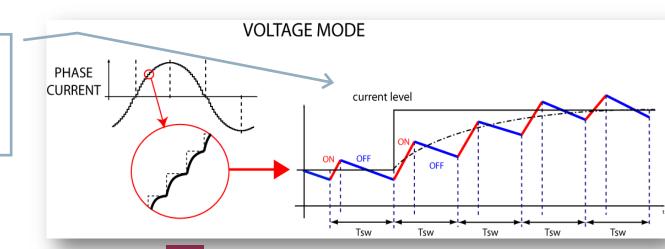


No external high dissipative shunt resistors

Voltage Mode Driver L6470 L6480



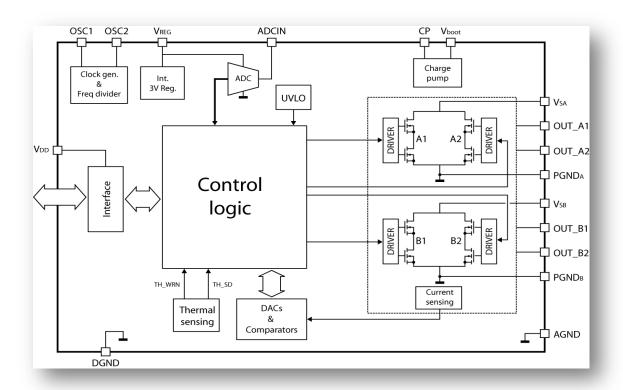
dSPIN


Voltage mode vs. Current mode

- ✓ Abrupt current changes cause strong mechanical vibrations.
- ✓ Peak current is controlled. Average current value is different from target one. Inaccurate positioning
- ✓ Torque ripple and EMI are difficult to control.

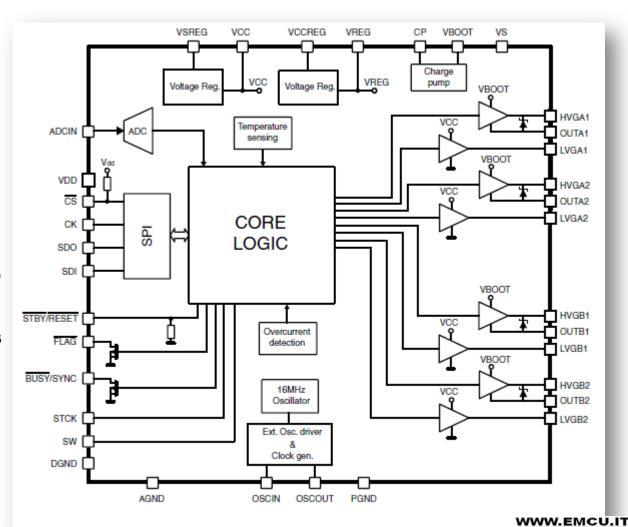
- ✓ Accurate positioning
- ✓ Motor movement is soft and silent!
- ✓ Torque ripple and EMI are under control.

WWW.EMCU.IT



dSPIN L6470 voltage mode Driver SILICA

- Supply voltage 8V 45V
- 3Arms (7A peak)
- $R_{DS.ON} = 0.28 \Omega$
- Up to 128 microsteps
- Voltage mode operation
- Programmable speed profile
- Programmable positioning
- **SPI** interface
- **Daisy Chain compatible**
- **Integrated 16MHz oscillator**
- **Integrated 5bit ADC**
- Integrated 3V voltage regulator
- **Over Current, Over Temperature**
- **Under Voltage protections**
- PowerSO and HTSSOP



cSPIN - L6480

- Supply Voltage 7.5V to 85V
- EXTERNAL MOSFET
- Programmable gate driving
- SPI Interface for Configuration, Control & Diagnostic
- Full set of Integrated Protections (OCD, UVLO, THERMAL)

Voltage mode control

AN4144

Voltage mode control operation and parameter optimization

AN4144 Application note

Voltage mode control operation and parameter optimization

By Englas Dal

Introduction

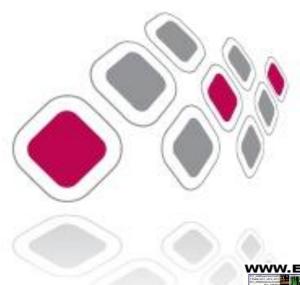
Voltage mode driving is the stepper motor driving method patented by STMicroelectronics® which improves the performance of classic control systems.

This driving method performs smoother operation and higher micro-stepping resolutions and is the best solution for applications where high precision positioning and low mechanical noise are mandatory.

This application note describes the operating principles of Voltage mode driving and the strategies for the regulation of the control parameters in order to fit the application requirements.

The application note also investigates and provides solutions to one of the most common issues in Voltage mode driving systems: the resonances of the stepper motors.

July 2012


Doc ID 023491 Rev 1

1/28

SUMMARY

L6472/74

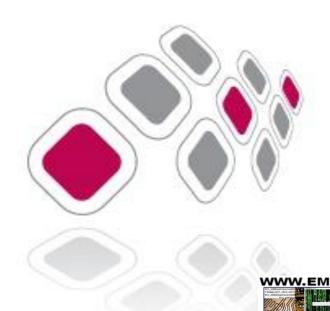
Feature	L6474 / L6472	Comment
Supply Voltage	8V – 45V	Wide range supply
R _{DSON}	280mΩ	Lowest R _{DSON}
µsteps	1, 2, 4, 8, 16	Highest resolution
Control mode	Current predictive current	Most sophisticated current control
Current sensing	Non dissipative No ext. shunt	Fully embedded no dissipative sensing
Decay mode	Adaptive control (patented)	Most advanced current decay control
Slope control	Adjustable (5 options)	Flexible in slope control to balance EMI & losses
Serial interface	Yes, multiple devices support	The only chip supporting multiple nodes on bus

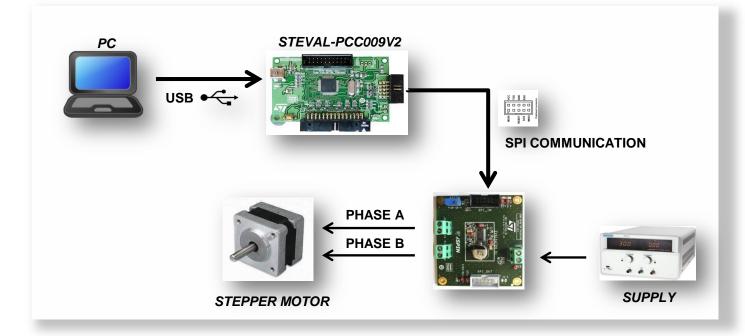
Feature	L6470	Comment
Supply Voltage	8V – 45V	
R _{DSON}	280mΩ	Lowest R _{DSON}
µsteps	Up to 128	Highest resolution
Current sensing	Non dissipative No ext. shunt	Fully embedded no dissipative sensing
Slope control	Adjustable (5 options)	Flexible in slope control to balance EMI & losses
Serial interface	Yes, multiple devices support	The only chip supporting multiple nodes on bus

L6480/L6482

Feature / Chip	L6480	L6482	Comment
Supply Voltage	10.5V – 85V	10.5V – 85V	Wide motor supply range
Gate drive current	Configurable	Configurable	Optimal adjustment according to ext. MOS
Miller clamp	Embedded	Embedded	Immunity to high dV/dt
µsteps	Up to 128	Up to 16	Highest resolution
Control mode	Advanced Voltage Mode	Predictive Current with Adaptive Decay	Voltage mode control / sophisticated current control
Speed / Positioning commands	Yes, thanks to intelligent core	Yes, thanks to intelligent core	Means much less load for the microcontroller
Current sensing	Non dissipative No ext. shunt	Non dissipative No ext. shunt	Fully embedded non dissipative sensing
Stall detection	Sensorless	N/A	Motor stall detected without ext. components
Serial interface	Yes, multiple devices support	Yes, multiple devices support	One SPI can manage multiple motor control

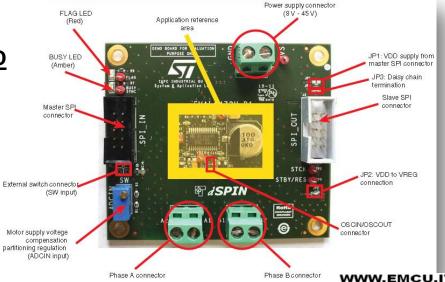
ST Advantages Summary


Feature	ST Advantage
Current control	Not dissipative. No need of external components
Target current	Digital. Programmed in a register
Decay timing	Digitally auto adjusted. With basic timing programmed in registers
Microstepping configuration	Programmed in a register
Thermal protection	One thermal warning + one thermal shut down threshold
Thermal dissipation	Down to 12°C/W with the power SO package
Daisy Chain	Yes C
Speed and position profile generation	Yes 🙂
Max µstepping	Up to 128 µsteps with the L6470/L6480


TOOLS

dSPIN - easySPIN Tools & Documentations

- Sales Codes
 - L6474H
 - L6474PD
- Product Page http://www.st.com/easyspin
- Data Sheet
- Easyspin Evaluation Tool Software
- Evaluation Board: <u>EVAL6474H</u>/ <u>EVAL6472PD</u>
- easySPIN Firmware Library
- Control boards <u>STEVAL-PCC009V2</u>

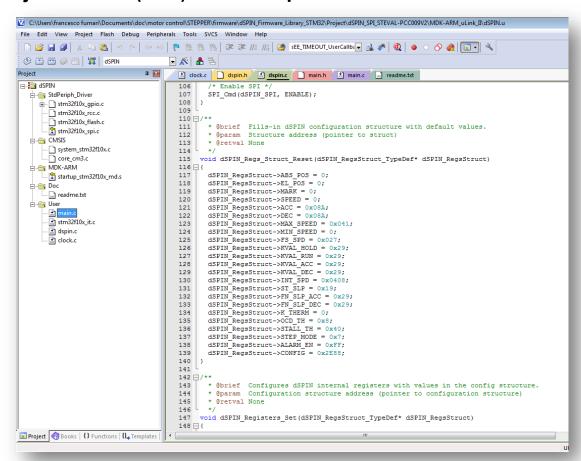


dSPIN – L6472 Tools & Documentations

- Sales Codes
 - L6472H
 - L6472HTR
 - L6472PD
- Product Page http://www.st.com/dspin
 - Data Sheet
 - dSPIN Evaluation Tool Software
 - Evaluation Board: <u>EVAL6472H</u>/ <u>EVAL6472PD</u>
 - Control boards <u>STEVAL-PCC009V2</u>

dSPIN – L6470 Tools & Documentations

- Sales Codes
 - L6470H
 - L6470HTR
 - L6470PD
- Product Page http://www.st.com/dspin
 - Data Sheet
 - Application Note (AN3103)
 - d SPIN Evaluation Tool Software
 - Evaluation Board: <u>EVAL6470H</u>
 - Control boards <u>STEVAL-PCC009V2</u>
 - dSPIN Firmware Library
 - Available on http://www.st.com/dspin



dSPIN – L6470 Tools & Documentations

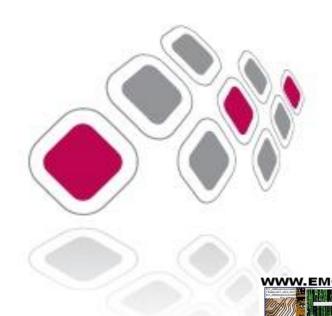
Dspin firmware library contains project folders (files) for development tools:

- IAR –EWARM v5
 - ✓ J-Link for STEVAL-PCC009V2
 - ✓ ST-Link for STM32 VL Discovery
- IAR –EWARM v6
 - ✓ J-Link for STEVAL-PCC009V2
- KEIL –uVisionv4.03, v4.20
 - ✓ uLinkII for STEVAL-PCC009V2
 - ✓ uLinkPro for STEVAL-PCC009V2
 - ✓ ST-Link for STM32 VL Discovery
- Raisonance–RIDE v7
 - ✓ R-Link for STEVAL-PCC009V2



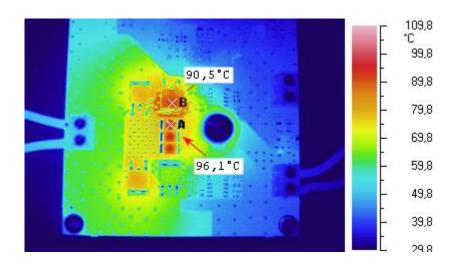
cSPIN – L6480/82 Tools & Documentations

- Product pages: www.st.com/cspin
- cSPIN order codes:
 - L6480/82 H (TR) HTSSOP38, Tube (Tape & Re
- cSPIN price information:
 - L6480/82 are at the same price
 - L6480/82 controllers cost approximately 20% less than the fully integrated L6470H (dSPIN) drive
- Evaluation boards:
 - L6480/82: EVAL6480H & EVAL6482H
 - Communication board STEVAL-PCC009V2
- ► PC Application with Graphical User Interface
 - Download will be available on the product web page
 - First version available on request

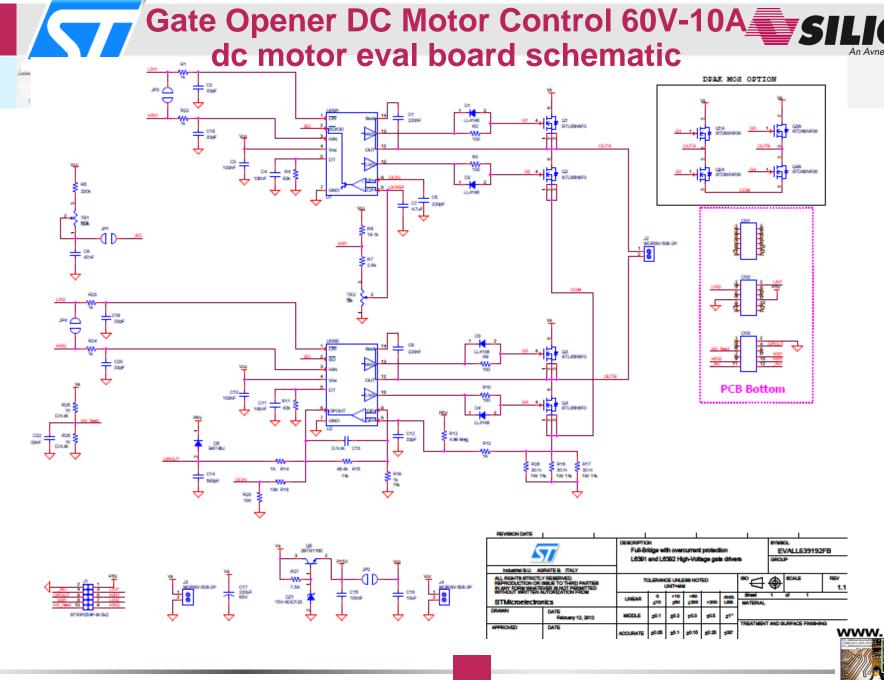


DC Motor Voltage Driver

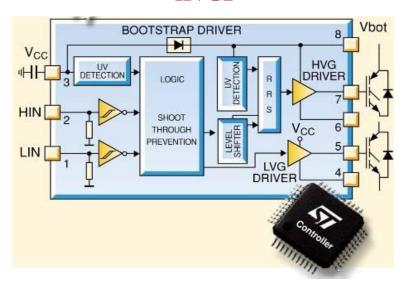




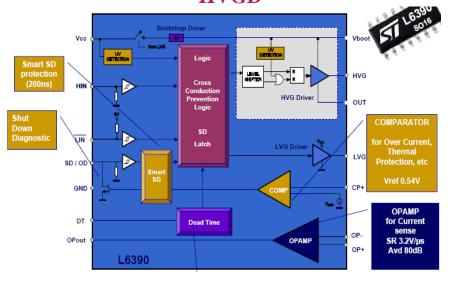
Gate Opener DC Motor Control 60V-10A SI DC motor NEW evalboard


L6391 + L6392 +4 STD60NF06 T amb 30°C 10 A **Thermal Measure**

Amplified Current monitoring and short circuit protection



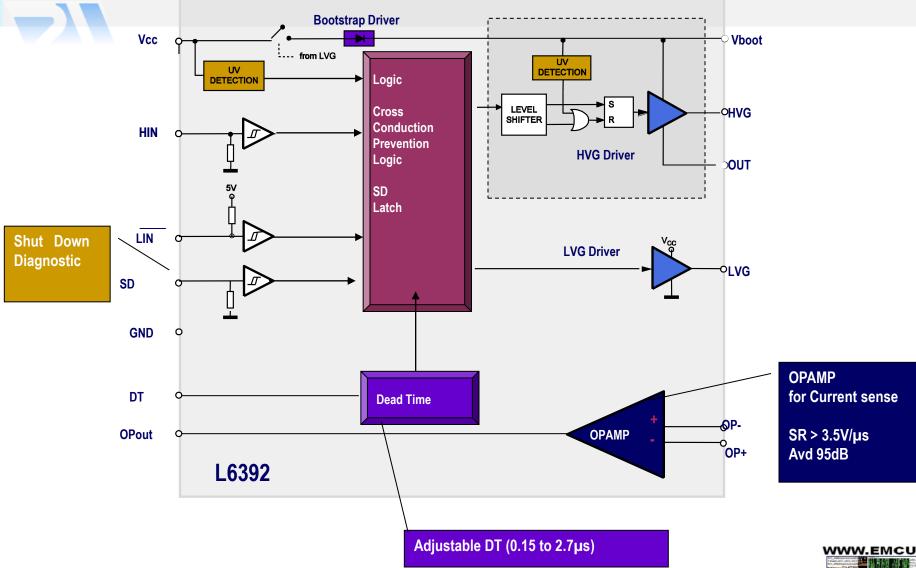
NEW INTELLIGENT POWER MODULE SILICA **DRIVERS**



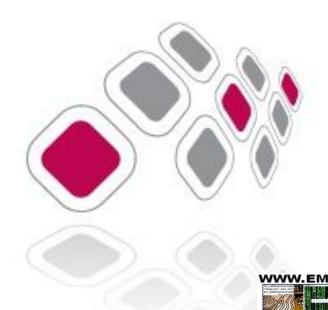
STGIPS10K60A **HVGD**

- **Dual Input**
- **CMOS/TTL Schmitt Trigger Inputs**
- **Shoot Through Protection**
- **Under Voltage Lock Out**
- 3.3V Input Logic

STGIPS14K60 / STGIPL14K60 **HVGD**


- **Dual Input**
- **Under Voltage Lock Out**
- **OPAMP**
- Comparator
- Dedicated pin for ShutDown
- Smart ShutDown
- **Dead Time**

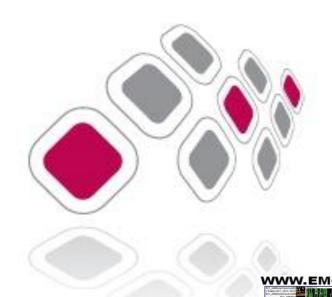
DRIVERS Half bridge L6392 main features



LV POWER MOSFET

PowerFlat 5x6 D.I

V _{DS} [V]	Part number	R _{DS(on)} (max) [mΩ]	Automotive grade	Technology	Status
30	STL40DN3LLH5	18	_	STripFET V	Active
30	STL60N32N3LL	9.2/5.5	_	STripFET V	Active
30	STL65DN3LLH5	6.5	_	STripFET V	Active
30	STL66DN3LLH5	6.5	Yes	STripFET V	Active
40	STL15DN4F5	9	Yes	STripFET V	Active
60	STL7DN6LF3	43	Yes	StripFET III	Active
60	STL8DN6LF3	30	Yes	StripFET III	Active
100	STL8DN10LF3	35	Yes	StripFET III	Active
150	STL10DN15F3	220	-	StripFET III	Active



Thanks for your attention

Simone Franceschin – Silica FAEs

simone.franceschin@silica.com

